imtoken官网下载app|dam
DAM 是什么? - 知乎
DAM 是什么? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册元数据内容营销内容资产元宇宙(Metaverse)DAM 是什么?DAM digital asset management,数字资产管理(数据资产管理)。数字资产包括哪些呢?国内外有什么好的工具?DAM能解决什么问题…显示全部 关注者8被浏览17,115关注问题写回答邀请回答好问题 2添加评论分享3 个回答默认排序特赞宇宙已认证账号 关注DAM是什么?Digital Asset ManagementDAM:60亿美金的市场,增速最快在亚太研究与市场(RESEARCHANDMARKETS)报告指出:全球DAM内容资产管理市场,在2020年有34亿美金规模,预计2025年达60亿美金,2026年达82亿美金。年复合增长12%~15%。· The digital asset management market is expected to reach USD 8,158.6 million by 2026, registering a CAGR of 18.5% during the period of 2021-2026.在全球市场里,亚太区市场规模虽仅占全球7%,但却是增长最快的区域。DAM是企业加速数字化升级的重要工具同样,在Forrester DAM报告中指出,不论是为了加速企业内容数字战略,还是后疫情时代云端协作的需求驱动,DAM成为了企业数字化升级的重要一环。"Accelerate Your Content Strategy With Digital Asset Management.""The pandemic has accelerated the path to digital transformation, and many companies are looking to digital asset management (DAM) systems to aid in the process.""Owing to the growing push for digital engagement, the creation and dissemination of digital content has increased significantly."从全球视野来看,64%的企业已经开始实施DAM系统;另外26%的企业也在计划之中或有兴趣。只有10%的企业尚未了解DAM软件。企业使用DAM来实现以下3大价值:· 优化内容创作成本:集中管理内容,提升内容复用 - 这一点,在内容需求越来越多的数字营销时代非常有价值,大型企业每年在内容上的花费以亿为单位,平均20%的节省就非常可观。· 强化使用权限管理并确保合规:通过AI审核,来降低版权风险。· 提升组织效率和效能:高效管理企业内外部内容工作流,提升可见度和效率。越是领先的企业,越是数字化程度高的企业,会越重视内容数字化和DAM系统。如何选择合适的DAM服务商?报告建议了三步走:· 先进行一个“内容审计”报告中提到:55%的受访者认为,对于企业特别是市场营销人员来说,如何高效管理和组织数字内容是一个重要挑战48%的受访者意识到,如果缺乏强有力的metadata(内容元数据),是无法实现行之有效的内容治理和复用的88%的受访公司,缺乏有效的内容权限管理,有大量内容资产流失的风险· 明确DAM可以和哪些系统连接和整合和CMS的连接是常见的在国内,基于特赞的实践,有可以和私域运营sCRM连接、和公域投放DMP连接等不同实战· 基于公司需求,设定DAM路线图理解DAM服务商的路径图 - 大部分DAM也是SaaS模式,是可以成长进化的同时结合公司自有的需求,特别是不同跨团队协作的需求来设计亚太区快速成长,如何选择合适的DAM供应商?报告指出,DAM市场在中国还在发展早期,有着较大的潜力和成长空间。报告指出,在2020年,特赞成为第一家本土的DAM公司,提供带有AI辅助的DAM内容管理系统。结合企业工作流、AI索引等功能,特赞为企业提供一站式的内容资源管理。"In 2020, TEZIGN became the first local DAM company, delivering AI-assisted content management functions for digital assets.Compared to Baidu Netdisk, which offers cloud storage without finding and setting document accessibility freely, TEZIGN provides a centralized resource library and incorporated project workflow information assisted with AI searchability."实际上,特赞比报告时间更早进入到DAM领域,并已经为领先企业提供了完整的DAM解决方案。· DAM在企业中的实战新快消,新货架:特赞以AI 助力联合利华内容数字化 | Sequoia Value+特赞获两项 Martech 大奖:DAM 内容中台助力品牌,携手上下游共荣生态特赞助力联合利华、A.O 史密斯品牌增长实践,获两项行业 Martech大奖 | 非凡大赏2021在最近国际权威市场调研机构 Forrester 发布的MRM Q1报告中,也遴选了「内容管理」的厂商,特赞入选。在报告中,Forrester 对全球 MRM 厂商的营收规模、技术实力、产品成熟度、行业占有率、市场表现等多个维度进行了综合评估,并深度研究了 MRM 产品在内容、品牌、资金、人员等营销资产的管理能力,甄选出了全球 MRM 厂商。企业为什么需要MRM?Forrester 提到,营销人员在以下场景需要寻求MRM工具:管理内容以降低成本,并改进内容分发和使用。企业需要一个安全的中央存储库来管理营销内容资产。MRM内容存储包括资产信息、使用指南和版本控制。丰富的元数据和高级搜索功能使查找相关内容变得容易,并避免重新创建材料。高级功能支持平台内的文件格式转换,大小调整,以及定制内容供区域或第三方合作伙伴调用。编辑于 2022-03-04 14:41赞同 4添加评论分享收藏喜欢收起Whale帷幄已认证账号 关注最近,疫情开始反扑且愈发严重,从零散几例快速爆发到了上万例,无数人进入了居家隔离阶段。但是大家的生活并没有按下暂停键,面对突如其来的疫情压力,企业运转的每分每秒都显得尤为珍贵。「居家办公」不再是一个陌生的词汇,办公环境转移到家里,工作量不减反增。而增加的工作量就是「沟通」。本来可以面对面解决的问题、可以开个会探讨的问题,现在都需要远程协作。此时,企业如果沿用旧有的沟通工具,将极易造成资源错位,给业务带来负面影响。此时企业需要的不是更好的视频软件,而是一个可以有序管理、调用人员与内容的平台系统,Whale DAM(数字资产管理系统) 就是一个很好的选择。01居家办公亦可轻松盘活资源服饰快销X品牌,策划举办「开春新‘身’折扣日」直播带货活动,并拟定一周内持续投放引流资源,在各个渠道投放预热视频、海报、种草软文等。项目负责人需要多个部门配合沟通,并且需要与外部供应商沟通。而项目刚开始就遇到了一系列情况:各部门负责的资料都存储在各自的设备/空间内,负责人需要一一询问对接人才能掌握项目进度;负责统计优惠商品的同学将此次活动与其他活动混淆,影响了内容制作周期;外部供应商提供多种引流内容,内容管理员使用沟通软件对接,图文视频等内容消息杂乱,造成审核缺失、信息错位,导致内容重制;项目负责人发现共享的项目文件内容被他人移除了部分,需找到移除者才能恢复内容……以上种种「项目」日常小坑,看似不起眼,却可能造成进度延误、增加本不必要的时间成本。而避免踩「坑」则需要从这四个角度出发:1)资源信息汇集项目不论大小,都需要一定的资源,而资源的同步与汇集格外重要。就像盖房子需要将工具、物料购置齐全并运送到施工场地,而 Whale DAM 「项目文件夹」就是这块「施工地」。项目文件夹支持设置多层级文件夹和全类型文件上传,结构化管理内容资产,使得「建材」汇集而不杂乱。沟通结果与内容文件在线实时同步,无需多点对接。2)划定权限范围项目参与人员不明确、资源权限不严格,或许某成员一个无意识的动作就会造成内容外泄的风险。「施工地」不仅需要划定范围,还需要进行边界防护,工作人员需要凭「证件」进入对应工作区域。Whale DAM 可以帮您制作、管理这些「证件」,权限新升级,细分更明确:4种内容权限层层递进,可满足不同参与人员需求;并且每个文件/文件夹都可以单独设置不同的协作者,减少非必要的信息泄露;增加协作者时,文件/文件夹所有者将收到添加通知,以防参与人员错误扩散,扰乱项目进度。3)审核流程嵌入项目的运行离不开对内容资产的审核,「建材」质量、规格都符合要求,才能用来「建房子」。Whale DAM 如果仅仅是可以管理内容资产,那么这个项目文件夹就泯然众「夹」了。其实,项目文件夹内可以设置一道检验关卡——项目负责人可在该文件夹内设置审核流程,内部内容负责人或者外部供应商上传成功后,内容进入流程,管理员进行分类审批和针对性反馈,过程清晰,提高审批效率。02多维进发,快速定位目标文件某美妆品牌 M,在开启节日带货直播前需要投放引流内容,进行预热。针对不同渠道的用户特性,M 品牌决定投放不同内容和类型的宣传物料,运营同学需要找到之前的节日视频、海报等作为参考,方便与外部供应商沟通。但由于沉淀梳理不及时,物料库内文件繁多,仅凭一些关键词难以快速定位目标文件;同时库内存在不少未通过审批的素材,难以界定可用性,因此运营同学在查找和分辨可用性上花费了大量不必要的时间……当品牌日益壮大,承接的业务也日益增多,内容资产也在不断累积,并对应着不同类型、不同时间段、不同分类、不同属性,仅使用文件标题+关键词搜索,很难快速定位到目标文件。多维搜索筛选譬如盖房子需要用到的多种木材,大都种类不一、用途不同:有的制成房梁、有的制成桌椅、有的制成装饰画框。当所有木材被打包存储在一间大仓库里,很难精准地找到想要马上使用的那一块,而多维搜索筛选就可以对木材进行更精确的细分。1)常规模糊搜索支持关键词搜索、大小写模糊搜索、拼音搜索、历史记录搜索、多语言搜索等。2)以图/色搜图支持相似图片搜索、 RBG 颜色搜索图片素材。3)OCR 识别结果修改/搜索OCR 即识别图片上的文字,在图片详情中展示,Whale DAM 支持模糊搜索识别后的结果。AI 识别并不能做到 100% 正确,用户在使用 OCR 识别结果搜索时,可能会因为错误的识别结果,降低了检索效率。因此我们增加了 OCR 识别结果修改功能,支持多种语言编辑,提高文件识别容错率,提高检索速度的同时也方便日后查找和复用图片素材。4)多维筛选器支持所有者、所属文件夹、编辑时间、标签、审核状态、内容类型筛选与关键词搜索结果交集处理,可更快速地检索到目标文件。搜索方式更多元化,提高搜索效率。面对突如其来的疫情压力,居家办公是大多数企业的应对常态,但机遇与挑战是并存的。选择 Whale DAM 提升企业对内容资产组织力与管理能力,灵活快速整合、调取所需资源,让疫情下居家办公的员工一样能高效完成工作,与公司一同在困境中成长。发布于 2022-04-21 13:25赞同 1添加评论分享收藏喜欢收起
知名的DAM(数字资产管理系统)有哪些? - 知乎
知名的DAM(数字资产管理系统)有哪些? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册版本控制系统版本管理知名的DAM(数字资产管理系统)有哪些?关注者30被浏览33,140关注问题写回答邀请回答好问题添加评论分享10 个回答默认排序DAMChinaConnect专注传播数字资产管理(DAM)理念、实践理论、和行业动态。 关注中国本土的 特赞TEZIGN DAM发布于 2020-08-04 20:32赞同 5添加评论分享收藏喜欢收起奥创光年已认证账号 关注「现如今,业务上以年轻人为产品目标人群。随着流量方式发生变化,不同平台不同算法,视频效果差距很大。这种情况下则会面临两种问题:1. 人为制作内容,内容效果不一定很好,具有随机性。理想方向是基于AI和数据做内容生产指导。2. 根据每一个 campaign 在不同平台特制内容,效率不高,内容素材无法复用共享,且价格贵时间长。Mogic 产品是我认为目前投放中优秀的解决方案,根据算法的角度去定义不同平台上哪些模版是比较好的内容。再根据广告公司提供的素材,做视频广告内容,这样效果好且效率能显著提高。我们相信机器自动化,未来一定是 performance marketing ,不要人力去改变算法结果。除非算法完全不 make sense ,这种情况下可以调试算法底层,而不是人去参与制作。未来,广告和媒介我认为也是 Mogic 可以去操作的,一键完成采买,从素材到投放的过程进行全程管理。」 ——奥创光年某饮料零售品牌客户(图为奥创Mogic内容协作平台登陆界面)作为国际巨头的饮料零售品牌,十分注重产品管理的高效性与复用率,期望能够在进一步降低营销成本的情况下,最大限度地扩大用户群体。基于此需求,该品牌与奥创光年 DAM 系统达成合作。简单来说, DAM 系统( Digital Asset Management )是一种数字内容管理解决方案,可用于存储、组织、管理和共享数字媒体文件,例如图像、音频、视频和文档。传统的 DAM 系统的特色在于大容量储存、丰富的元数据与可扩展性,而奥创 DAM 系统是在传统 DAM 系统功能的基础上,配备 AI 智能化技术,融合了 AI 自动化、素材高复用、一站式管理等多项功能于一身的新型 DAM 系统。01.为什么要用DAM?依据 Nitro 调查,员工平均花费 50% 时间用来准备和创建文档,而寻找文档的时间要占日常工作时间的 21% 。在日常业务中,品牌的重心倾向于常态化的内容策略、媒体对接,以及各种大促活动、产品上新的营销筹备等业务上,企业的数字资产库随之不断扩大,导致内部堆积了海量的文档、宣传视频、图片,甚至大量的源文件,还有难以组织和分类的各项数据,尤其是在不同云盘、不同电脑、不同人员中。一个个孤立的素材内容如同一座座孤岛,零碎分散地在某一个「无名海域」。而 DAM 系统提供了一种集中式的方式来管理数字资产,真正做到「海纳百川」,使孤立的内容变得易于查找、共享和重复使用。同时,它也可以帮助品牌有效地管理其数字媒体库,并保护这些资产的版权和安全性。在国内,奥创结合服务国内 100 + 一线品牌 DAM 内容数字化转型项目的实战经验,提出 DAM 系统「 3 + 1」功能,以深化业务内容营销场景和系统技术之间的契合度,提升内容数字化的商业价值。(图为奥创所服务的部分一线品牌)02.奥创 DAM 系统“ 3 + 1 ”功能基于多年品牌内容增长经验与 AI 技术,奥创 DAM 系统将用户划分为内容生产方、内容使用方、内容管理方三类,并根据企业内部数据增长变化,策略性地实施 DAM 系统,针对性地发挥功能作用,从而真正帮助品牌获得长效发展,实现内容驱动增长。奥创DAM系统「 3 + 1」功能中,「 1」指的是奥创DAM系统中所具备的传统 DAM 系统功能,如集中管理、素材分类等。「 3」则是奥创基于传统 DAM 系统功能之上,配备AI智能化技术所提供的「自动化」、「素材高复用」、「一站式管理」三大功能,点对点地解决不同用户的痛点。「 AI 自动化」助力内容生产方突破创意关卡,质与量齐头并进内容生产方通常是由营销团队、品牌策划团队、创意团队和专业的内容制作公司组成,在品宣过程中更重视内容的安全性、创意性和高效性。他们的作用是负责为品牌创造高质量的内容,包括文字、图片、视频、音频等,以吸引、留住和扩大品牌的受众群体。其中,他们最为关注的则是具有一定价值的产品图片、视频以及手册等,这部分素材在业务场景中是高频复用的素材,能够有效提升品牌活跃度。同时,他们还需要跟进内容的表现和反馈,不断优化策略和内容,以确保品牌的持续发展和增长。这类人群往往会在日常办公中遇到以下类似的问题: 1. 「这么多素材的批量生产,它的安全性能否得到保证?」 2.「在日均生产千余条视频的情况下,怎么保持每条视频的高质量和创意性?」 3. 「人工生产的内容具有随机性,我该如何基于数据生产优质内容?」 4. 「如何在市场需求下,大批量的生产内容?」针对以上用户痛点,在 DAM 系统中, AI 可以根据市场数据自动化生成批量的优质视频,满足市场需求,产生较好的内容效果。比如,奥创在与 1688 合作过程中,单天视频生产量能够破 10 万,用于商品详情介绍,为商家大幅度降度人力资源的开支。并且, AI 自动化生成视频相较于过去,不仅意味着企业不再需要手动地制作视频,从而大大缩短了制作周期和成本,提高了视频的质量和效果,而且内容素材的创意力或将达到另一个巅峰。奥创光年混剪经典案例https://www.zhihu.com/video/1656613952439255040此外,为满足不同场景下对素材的高效应用,图片素材不仅能够通过素材延展调整尺寸,也可以通过素材衍生修改图片内容;对于视频素材,可以基于行业标签体系形成关于视频整体、画面、文本等内容的知识图谱。这大大降低了内容效果的随机性,进一步为品牌开源节流。奥创 DAM 系统还提供了灵活的权限管理功能,使得品牌可以根据自身组织架构进行权限管理,将所有内容集中存储的同时兼顾安全与隐私,安全有效管控不同部门内容。无论是企业内部人员还是外部合作伙伴,都可以通过 DAM 系统中的安全控制和权限管理来保护企业的内容资产的同时,实现数据共享和协作。「素材高复用」助力内容使用方摆脱「一平台特制一素材」的困境内容使用包括内容的使用和投放。内容使用方指品牌的内容创作者或管理者,他们负责制定、撰写、发布和管理品牌的各种内容,包括文字、图片、视频、音频。他们更重视内容的便捷性、可取性、复用性。这类人群往往关注以下类似问题:1. 「素材的流转情况如何?每条素材的重复利用性能否加以判断」2. 「不知道能否在外出无法携带电脑的情况下,用移动端随时获取需要内容?」 3. 「成员之间对于素材的沟通不顺,常常感到心累」 4. 「每一份素材进行单独的数据监控,费时费力且作用不大」针对于用户痛点,在奥创 DAM 系统中,支持团队在线编辑素材与一键投放。用户可以无间隔地分享、投放素材和文档,避免了邮件附件和云存储的麻烦。即使是异地、不同时差的情况下,通过奥创 DAM ,品牌员工也能够通过手机、电脑、平板端的产品登陆界面,登陆、查找、使用、分享内容,也可以将所需内容一键快速上传。这大大减免人员之间的沟通成本,避免了同事之间来回分享的冗长流程。并且能够多维度、多视角地对数据进行实时监控,筛选出优质素材,了解什么样的视频最受关注,什么样的视频结构最好,择优进行复用。值得一提的是,奥创的数据分析技术是 DAM 系统中最强大的工具之一,技术团队利用最先进的算法和机器学习技术,可以深入挖掘数字资产库中的数据,准确匹配优质素材,从而为品牌方提供高质量的数据分析结果,达到优质素材最优化的程度。这不仅能全面展示数字资产库中的数据趋势和模式,还能挖掘隐藏在数据背后的价值信息,从而为品牌方的业务决策提供更精确的支持,摆脱人为误判而导致企业内容资产损失的窘境。奥创的数据分析技术还具有高度的可定制性和灵活性,可以根据具体需求和业务场景进行定制化的服务,实现品牌方「独一无二」的使用体验感。截至目前,奥创已经服务了包括美妆、食品、饮料、金融、房产等多个领域几十家一线品牌,为各品牌提供强大有力的技术支持,并因为出色的成绩,荣获阿里妈妈最佳生态伙伴奖项。此外,通过奥创 DAM 系统中的 NLP 和 CV 技术,能够实现自动化的内容切分、理解和标注。通过机器,自动将知识图谱中的标签添加到内容上,将素材内容真正转化为能够沉淀、传承和复用的资产。「一站式管理」助力内容管理方破解「素材一团乱麻」的难题内容管理方是指负责管理和维护品牌内容的团队。这个团队通常由品牌营销、数字营销、内容创意和社交媒体等专业人员组成。他们的主要任务是制定、实施和管理品牌的内容战略,创建和发布相关内容,以及监测和分析内容的表现和效果。他们更重视内容的管理性和可视化。这类人群往往关注以下类似问题:1. 「上百上千条视频,怎么进行管理才能迅速找到所需素材?」 2. 「面对海量的素材,总容易重复劳动怎么办?经常找错素材怎么办?」针对于用户痛点,奥创 DAM 系统中支持以产品线为单位,快速创建素材库,无需手动整理和排列素材,哪怕是新手小白,也能轻松上手高效 DAM 系统。这是奥创 DAM 系统的最大亮点之一。奥创 DAM 系统利用 AI 技术对内容素材进行智能化标签管理模式,将一系列零散的素材内容进行统一、安全、有效的分类,并进行了清晰的类目分类,使得品牌员工可以精准快速地查找、筛选所需内容素材。这种将内容集中后台存储,能够有效地解决海量素材缺乏集中存储管理,存在重复工作、误用物料的情况,从而大大提高企业的工作效率。为便于沉淀历史素材和日常产出的数据,将素材转化为能够持续产生价值的内容资产,可以通过资产管理建立货架,实现在线的统一管理、查找、分享和使用,使得内容流转和团队协作效率更高。此外,奥创 DAM 系统能够智能识别图像与视频,即便是琳琅满目、五花八门的内容也能精准入筐。这一功能不仅能让企业搜索更加高效快捷,还能让每一次的内容上传都为积累品牌内容深度打下夯实的基础,为未来品牌的长线发展埋下伏笔。面对品牌用户的诸多痛点,奥创的 DAM 系统提供了针对性的产品功能与售后服务,对品牌在内容工作日常的效率进行全面升级,期望能为品牌带来极致的身心愉悦的体验感。在未来,奥创期待与您一起探索 DAM 系统中的数据分析技术,开启数字资产管理的全新时代。发布于 2023-06-26 11:11赞同 1添加评论分享收藏喜欢
DAM中文(简体)翻译:剑桥词典
DAM中文(简体)翻译:剑桥词典
词典
翻译
语法
同义词词典
+Plus
剑桥词典+Plus
Shop
剑桥词典+Plus
我的主页
+Plus 帮助
退出
剑桥词典+Plus
我的主页
+Plus 帮助
退出
登录
/
注册
中文 (简体)
查找
查找
英语-中文(简体)
dam 在英语-中文(简体)词典中的翻译
damnoun [ C ] uk
Your browser doesn't support HTML5 audio
/dæm/ us
Your browser doesn't support HTML5 audio
/dæm/
dam noun [C]
(WALL)
Add to word list
Add to word list
a wall built across a river that stops the river's flow and collects the water, especially to make a reservoir (= an artificial lake) that provides water for an area
(尤指旨在蓄水的)堤坝,水坝
The Aswan High Dam is on the River Nile in Egypt.
阿斯旺大坝位于埃及境内的尼罗河上。
比较
dyke (WALL)
dam noun [C]
(MOUTH)
a
dental dam
(dental dam)
damverb [ T ] uk
Your browser doesn't support HTML5 audio
/dæm/ us
Your browser doesn't support HTML5 audio
/dæm/ -mm-
to build a dam across a river in order to store water
在(河上)筑坝蓄水
短语动词
dam something up
(dam在剑桥英语-中文(简体)词典的翻译 © Cambridge University Press)
dam的例句
dam
And there was still no dam after the second and third batches.
来自 Cambridge English Corpus
If s1 is chosen in this way, then the upstream dam will normally be larger, and the downstream smaller.
来自 Cambridge English Corpus
They are the only groups who can know the immediate local impacts of the dam.
来自 Cambridge English Corpus
A dam of modeling clay was used to allow the shear testing to be conducted in submersion.
来自 Cambridge English Corpus
Each subfamily was obtained by crossing one sire with five dams.
来自 Cambridge English Corpus
I began to teach them courses about environmental legislation and law and social and environmental impacts of big dams.
来自 Cambridge English Corpus
It was meant to be a multi-stakeholder forum where government, civil society and industry assessed seven large dams around the world.
来自 Cambridge English Corpus
Instead, the provinces in which those dams were located were empowered to decide on their privatisation.
来自 Cambridge English Corpus
示例中的观点不代表剑桥词典编辑、剑桥大学出版社和其许可证颁发者的观点。
A1
dam的翻译
中文(繁体)
(尤指旨在蓄水的)水壩,水堤, (dental dam), 在(河上)築壩蓄水…
查看更多内容
西班牙语
presa, madre, construir una presa sobre…
查看更多内容
葡萄牙语
barragem, represa, represar…
查看更多内容
更多语言
日语
土耳其语
法语
加泰罗尼亚语
in Dutch
阿拉伯语
捷克语
丹麦语
印尼语
泰语
越南语
波兰语
in Swedish
马来语
德语
挪威语
韩语
in Ukrainian
意大利语
俄语
ダム, ダムを作る, ダムを造(つく)る…
查看更多内容
baraj, bend, set…
查看更多内容
barrage [masculine], construire un barrage, barrage…
查看更多内容
presa, construir una presa sobre…
查看更多内容
dam, stuwmeer, afdammen…
查看更多内容
سَدّ, يَبني سَدّا…
查看更多内容
hráz, přehrada, přehradní jezero…
查看更多内容
dæmning, dige, opdæmmet vand…
查看更多内容
bendungan, waduk, membendung…
查看更多内容
เขื่อน, น้ำที่กักไว้, สร้างเขื่อน…
查看更多内容
đập nước, nước ngăn lại, xây đập ngăn nước…
查看更多内容
zapora, tama, zbiornik…
查看更多内容
fördämning, damm, fördämma…
查看更多内容
empangan, simpanan air, mengempang…
查看更多内容
der Staudamm, der Stausee, stauen…
查看更多内容
demning [masculine], demme opp, demning…
查看更多内容
댐, 댐을 건설하다…
查看更多内容
дамба, гребля, загачена вода…
查看更多内容
diga, arginare, barriera…
查看更多内容
дамба, плотина…
查看更多内容
需要一个翻译器吗?
获得快速、免费的翻译!
翻译器工具
dam的发音是什么?
在英语词典中查看 dam 的释义
浏览
dalliance
dally
dally with someone
Dalmatian
dam
dam something up
damage
damage limitation
damaged
dam更多的中文(简体)翻译
全部
dental dam
dam something up
查看全部意思»
词组动词
dam something up
查看全部动词词组意思»
“每日一词”
veggie burger
UK
Your browser doesn't support HTML5 audio
/ˈvedʒ.i ˌbɜː.ɡər/
US
Your browser doesn't support HTML5 audio
/ˈvedʒ.i ˌbɝː.ɡɚ/
a type of food similar to a hamburger but made without meat, by pressing together small pieces of vegetables, seeds, etc. into a flat, round shape
关于这个
博客
Forget doing it or forget to do it? Avoiding common mistakes with verb patterns (2)
March 06, 2024
查看更多
新词
stochastic parrot
March 04, 2024
查看更多
已添加至 list
回到页面顶端
内容
英语-中文(简体)例句翻译
©剑桥大学出版社与评估2024
学习
学习
学习
新词
帮助
纸质书出版
Word of the Year 2021
Word of the Year 2022
Word of the Year 2023
开发
开发
开发
词典API
双击查看
搜索Widgets
执照数据
关于
关于
关于
无障碍阅读
剑桥英语教学
剑桥大学出版社与评估
授权管理
Cookies与隐私保护
语料库
使用条款
京ICP备14002226号-2
©剑桥大学出版社与评估2024
剑桥词典+Plus
我的主页
+Plus 帮助
退出
词典
定义
清晰解释自然的书面和口头英语
英语
学习词典
基础英式英语
基础美式英语
翻译
点击箭头改变翻译方向。
双语词典
英语-中文(简体)
Chinese (Simplified)–English
英语-中文(繁体)
Chinese (Traditional)–English
英语-荷兰语
荷兰语-英语
英语-法语
法语-英语
英语-德语
德语-英语
英语-印尼语
印尼语-英语
英语-意大利语
意大利语-英语
英语-日语
日语-英语
英语-挪威语
挪威语-英语
英语-波兰语
波兰语-英语
英语-葡萄牙语
葡萄牙语-英语
英语-西班牙语
西班牙语-英语
English–Swedish
Swedish–English
半双语词典
英语-阿拉伯语
英语-孟加拉语
英语-加泰罗尼亚语
英语-捷克语
英语-丹麦语
English–Gujarati
英语-印地语
英语-韩语
英语-马来语
英语-马拉地语
英语-俄语
English–Tamil
English–Telugu
英语-泰语
英语-土耳其语
英语-乌克兰语
English–Urdu
英语-越南语
翻译
语法
同义词词典
Pronunciation
剑桥词典+Plus
Shop
剑桥词典+Plus
我的主页
+Plus 帮助
退出
登录 /
注册
中文 (简体)
Change
English (UK)
English (US)
Español
Русский
Português
Deutsch
Français
Italiano
中文 (简体)
正體中文 (繁體)
Polski
한국어
Türkçe
日本語
Tiếng Việt
हिंदी
தமிழ்
తెలుగు
关注我们
选择一本词典
最近的词和建议
定义
清晰解释自然的书面和口头英语
英语
学习词典
基础英式英语
基础美式英语
语法与同义词词典
对自然书面和口头英语用法的解释
英语语法
同义词词典
Pronunciation
British and American pronunciations with audio
English Pronunciation
翻译
点击箭头改变翻译方向。
双语词典
英语-中文(简体)
Chinese (Simplified)–English
英语-中文(繁体)
Chinese (Traditional)–English
英语-荷兰语
荷兰语-英语
英语-法语
法语-英语
英语-德语
德语-英语
英语-印尼语
印尼语-英语
英语-意大利语
意大利语-英语
英语-日语
日语-英语
英语-挪威语
挪威语-英语
英语-波兰语
波兰语-英语
英语-葡萄牙语
葡萄牙语-英语
英语-西班牙语
西班牙语-英语
English–Swedish
Swedish–English
半双语词典
英语-阿拉伯语
英语-孟加拉语
英语-加泰罗尼亚语
英语-捷克语
英语-丹麦语
English–Gujarati
英语-印地语
英语-韩语
英语-马来语
英语-马拉地语
英语-俄语
English–Tamil
English–Telugu
英语-泰语
英语-土耳其语
英语-乌克兰语
English–Urdu
英语-越南语
词典+Plus
词汇表
选择语言
中文 (简体)
English (UK)
English (US)
Español
Русский
Português
Deutsch
Français
Italiano
正體中文 (繁體)
Polski
한국어
Türkçe
日本語
Tiếng Việt
हिंदी
தமிழ்
తెలుగు
内容
英语-中文(简体)
Noun
dam (WALL)
dam (MOUTH)
Verb
例句
Translations
语法
所有翻译
我的词汇表
把dam添加到下面的一个词汇表中,或者创建一个新词汇表。
更多词汇表
前往词汇表
对该例句有想法吗?
例句中的单词与输入词条不匹配。
该例句含有令人反感的内容。
取消
提交
例句中的单词与输入词条不匹配。
该例句含有令人反感的内容。
取消
提交
到底什么是DAM? - 知乎
到底什么是DAM? - 知乎首发于特赞阿波罗计划切换模式写文章登录/注册到底什么是DAM?Harrison独立探索产品边界 在讨论这个命题前我们需要定义好范畴,比如DAM(Digital Asset Management) 包含什么?大家对于DAM的定义是什么?首先宽泛的词汇定义针对行业和品类上必定有理解的歧义,有的人认为DAM就是在线素材管理软件的一大统称,有的人认为它特指图片管理软件,这些其实都没有对错可言,所以这篇文章针对我目前的认知做一些分享。狭义的DAM定义 : 1.以图片存储为中心的管理软件可能大多数人会倾向这个定义。图片管理软件通常允许用户上传图片,同时构建多层级文件夹,并且通过标签的方式让用户快速找到图片。成熟度高的商业产品还支持智能文件夹,支持全平台管理和外部集成同步,以及高效的图片查找和去重能力。图片在线管理软件,给用户带来的主要价值是静态层面的提升,通过足够多的平台上传进行统一管理和存储,以便经过结构化文件夹或者标签来完成高效检索目的。所以素材整理是每个设计从业者都会遇到的个人问题,尤其在需要和各种图片类型文件打交道的领域广泛使用。当然如果用户足够自律,操作系统集成的资源管理系统也能承担一部分角色,不过缺失了图片高效搜索和跨平台同步的主要管理特性,所以图片管理软件只能提升一般执行力,减少图片杂乱,散落,保证图片类型素材可以高效检索。2.以存储空间为中心的管理软件有不少行业,虽然协作相对复杂,但是最终会聚焦在素材存储上,比如咨询,建筑,广告等。往往由部分成员先创建素材,然后分工处理和加工。或者基于设计蓝图,派生各种沟通和任务。此时更丰富的文件类型,更为强大的同步和备份功能是保证素材的新鲜度和安全度的前提。这恰恰是网盘的基础产品特性,因为对数据存储的依赖性,市面上所有的大型终端应用将网盘能力作为标配。但是云端的存储成本则需要通过合理的商业模式来保证服务的持续性。但是为了契合企业使用场景仅仅具有网盘的基础能力是不够的。所以衍生出了企业知识管理类的协作软件。企业知识管理最重要目标是:在他人的脑中构筑对陌生事物的认知以及指南;企业中等知识整理通常有这些基础类型:文章(Article)、检查清单(Checklist)、流程图(Flow chart)、问题(Issue)等大部分企业都认同知识管理的价值,但常常是理论和空想多,难以落地和坚持,执行过程中也充满痛点,也许是因为理论和执行之间缺乏具体方法和形式的引导,所以和OKR一样,光靠采购OKR软件来落地企业OKR是不靠谱的;如果说图片素材整理只是解决了个人效率问题,那么存储空间为中心的管理软件则是为了构建企业或个人知识管理空间。DAM(Digital asset Management)到底是什么?在讨论这个话题前我们需要了解企业应用的基本活动,这五种抽象直接代表了所有 SaaS软件的根本使命,这些都将定义产品背后最基础的设计逻辑;1.数据收集(Data Collection)数据采集的手段包括由表单录入(格式化数据),通过 API 或者 Webhook 等接口获得,通过文件批量获得,以及通过影像、声音等多媒体渠道获得。在企业管理数字资产场景下,上传作为数据采集的方式之一,在某些情况下数据收集不是一次性的,比如需要提供标准API获取或调取企业内外部数据资产;2.数据传输(Data Transfer)数据传输指数据的查看权和编辑权在不同用户之间的转移的能力,基本形式包含有明确接受者的转移和无明确接受者的转移;在企业的的数据资产流传环节中,有明确接受者的数据转移比如数字资产的审核能力;无明确接受者的数据转移类似数字资产的分享能力;3.计算(Computation)计算是基于输入的数据,通过某种算法给出用户期望的计算结果,计算包含数据的搜索(筛选)、排序、分类、推荐和一般意义上的统计;企业数字资产管理员,需要通过筛选和搜索来快速定位正确的数字资产; 而DAM把数字资产管理员,从挖掘杂乱无章的文件夹中,被人遗忘的归档电子邮件,甚至是散落在各处的网盘中解放出来。4.数据的呈现(Data Presentation)将直接采集的数据和计算的结果,将信息呈现给用户的过程就是数据呈现的基本活动,数据呈现活动大致可以分为两类任务,一类是为用户构筑合理的数据视图(View),另一类是为量化数据构筑可视化界面(Visualization);数字资产的本质离不开管理,品牌需要通过内容和设计和客户建立联系,监测数字资产在销售和市场方面的标签是否符合投资预期,以便了解什么是应该坚持的,什么因素会推动品牌调性在某个投放环境下的延展。 5.控制(Control)控制是企业活动中最难抽像的数据活动行为,但直接带来的结果便是自动化,SaaS产品的自动化产品设计和技术实现都不那么容易,一方面依靠极度抽象的数据结构以及质量可靠的代码,另一方面需要一个通用的抽象框架来支撑所有具体业务场景,如果在产品内部设计自动化的控制特性那必然将面临横跨多个应用之间的数据交互,应用本身的特点和特征分析评估,无论对产品和技术都是一项考验。在DAM中产品自动化将直接为数据资产的全生命周期所服务,需要从具体的场景出发,但又必须从具体细节抽离出来,比如当数字资产完成最终的使命,不需要为当前的营销活动所服务,这时产品需要设计好一个控制活动,需要明确数据流程的起点和终点,但同时还需要考虑未来某一天有价值的复用。DAM包含了所有SaaS产品的使命,但最终还是要回归到背后的管理对象本质:数字资产的生命周期企业数字资产在从构思到归档后将会触及许多职能人员的双手,资产会进行多轮审查,最后还必须收集和考虑数字资产的表现最终衡量对于企业的ROI,哪些内容是正确的?怎么把所有重要的企业数字资产回流至DAM?以下是企业数字资产所要经历的几个阶段:构思和规划(Ideation & Planning)头脑风暴阶段,已经有完整的想法,需要安排时间协调资源进行准备,特定的元数据画面感已经有了;创造(Creation)数字资产的生成阶段,规范想法将进行落地,数字资产落实到DAM成为数据实体,以便后续进行评论注释以及讨论; 回顾与反馈(Review & Feedback)品牌方或者客户需要检查当前在创造阶段的数字资产是否符合品牌调性或者是活动目标,比如进行一些调整和优化,甚至需要通过安全手段来检验资产的合法性;批准(Approval)数字文件转化为品牌方或者公司资产需要经过多轮审批,最终达成一致性,随后通过多种渠道和形态出街或分发给消费者;出版、分享及发行(Publication, Sharing & Distribution)此时数字资产处在分发阶段,他们将在对的背景下,针对对的时间呈现给对的人;存档或改用(Archive or Repurpose)数字资产已经完成了它的主要目的。它已经完成了分发使命,但在未来很可能被另一个有价值的活动复用,同时也为存档资产留下充分理由;电商流量环境的变化在现在的时代场景下,品牌对于电商的投入不言而喻,特别是在2007年到2010年间是电商的爆发增长时期,全渠道和数字智能化品牌建设在高速发展,使得品牌可以和消费者互动的距离可以无限接近。线上流量和交易平台是电商的两端,目前淘宝的流量积蓄被私域入口侵占,为了提升电商平台价值淘宝也在竞争中引入优酷和微博等平台,甚至短时间诞身了如涵这样的新型企业;电子商务的发展潮引领了企业对于创意集中管理的需求,创意方需要不断寻找被品牌方认可的创意内容,从而加速品牌在其中的参与度;电商领域只是品牌企业所涉及的某一部分,DAM在其中起到了自下而上的作用,同时企业也要面对,不断增长的数字资产的数量和其多样性的挑战。所以我们用以下图来表示DAM在企业当中的位置以及一些主要的核心产品特性;可以通过主要的产品特性看到,DAM中会充满企业构建的五花八门的创意,从最基础的文档到最丰富的视频类资产,根本上这些都是创意人员开发品牌资产所构建的内容;这些资产连同元数据可能最后需要经过复杂的审批流最终才能完成素材生命周期的闭环;如果DAM在整合能力部分抽象的足够到位,那么理论上所有的平台都能与其连接。这也同时会让企业内部团队工作得更有效率。另外在企业协作场景下企业内部会使用不同的工具,一般大型企业都会有自己的OA管理系统,在这方面会比较考验产品经理对于产品集成标准化的边界设计能力。这张图最下面其实还有更多的基础生产工具,比如云端存储供应商(Box、Dropbox等)、创意生产工具(PS、AE等);最后,其实在产品设计层面DAM其实也有形态的两端,产品经理需要在这两端保持极度平衡才会让整个DAM显得更凸显其自身的价值。至于这两端到底是什么,需要结合中国本土市场做一些探索;编辑于 2019-11-06 08:53数字化资产品牌赞同 564 条评论分享喜欢收藏申请转载文章被以下专栏收录特赞阿波罗计划特赞产品技术的阿波罗计
什么是DAM?数字资产管理为何重要? - 知乎
什么是DAM?数字资产管理为何重要? - 知乎切换模式写文章登录/注册什么是DAM?数字资产管理为何重要?深绘商品全生命周期管理中台DAM(Digital Asset Management)数字资产管理数字资产管理系统是一个集中式存储库,组织可以在其中有效地存储、组织、管理、访问和分发大量数字资产,例如图像、图形、布局、PDF文件、文档、网页、视频剪辑,社交媒体帖子和音频文件。DAM数字资产管理系统汇集了企业人员、流程和数据,以使许多基本的内容营销工作流程(包括创意协作、内容审查和批准、品牌管理、版本控制和许可管理)更加简化和高效。强大的DAM可以带来从创建到管理到分发再到存储的整个内容生命周期的好处,它可以帮助企业应对现代内容营销的挑战。数据资产管理系统是做什么的?尽管DAM是一门学科,但它也是一项技术/以其最简单的形式,数字资产管理系统提供了一个安全的存储库,便于创建、管理、组织、生成、发布,并且媒体文件有可能作为数字资产盈利。与其他内容管理技术一样,DAM系统提供基本的图书馆服务:一个普遍(通常是集中的)的安全之地用以存储、组织以及检索文件。它还提供核心流程服务,包括用于管理、操作、转换、安全、移动和处理富媒体文件及其元数据的特定功能。大多数DAM系统现在可与其他工具和系统集成,对于内容营销官来说,这些工具和系统特别有用。再也不用怀疑你访问的是正确的还是最新版本的LOGO或资产了。为什么数字资产管理很重要?依据Nitro的调查,员工平均花费50%时间用来准备和创建文档,你更想不到的是寻找文档要占日常工作时间的21%。企业的业务和内容需求增长得越多,企业的数字资产库就会变得越大。在里面包含了大量非结构化数据——所有未包含在整洁数据库中的信息、包含在文档、图片,设计源文件,PowerPoint、电子邮件附件、电子邮件、聊天记录中的信息;还有难以组织和分类的数据,尤其是在传统的文件夹和子文件夹层次结构中。内容分散在孤立系统和应用程序中,就像散落在海洋中的一个个孤岛。数字资产管理的优势对比使用DAM有以下好处:1、简化数字资产生命周期数字资产管理解决方案可以简化工作流程,并成为所有品牌内容的孵化器,让团队能够从构思、创建、共享和管理,一个平台里把流程跑通。2、用户权限管理内容生产供应链涉及到许多部门、机构、自由职业者,外包服务商等,需要特别注意的是,要确保所有想使用的用户都能有不同的管理权限。DAM可以为客户提供方便的自助管理能力,比如,日常生产表格,工作日志、文件,图片,视频各种数据等。3、提高成员工作效率可以提高各成员之间的工作效率,做到每一个文件可查找,可追溯,可在在线多人进行同时在线选片,修图,分片等等。4、分发一致性全渠道的产品发布工作量非常大,支持批量调用内部资源也可大大提高发布效率。不仅如此,还可以与第三方供应商等外部各方共享品牌资产。企业的外部合作伙伴可以通过安全链接、社交媒体或公司官网访问已允许的数字资产来维护品牌一致性。DAM客户有以下3个典型共性:我们可以大致概括为:有前瞻视野,或者数字化程度高的大型企业。1.部跨门,多角色协作:数字化企业的部门众多,员工基数大,内容数字资产更加庞杂。标签化、权限化管理后的内容资产,能降低员工的内容工作时间成本,提升协作效率。2.跨平台,多平台协同:企业发展到一定程度,用户触点和业务交易场景,分布在阿里、腾讯、京东、字节等多平台上。企业需要统一的内容供给和管理能力,并探索内容数据的回流和优化。3.重视企业的基建,追求高效工具:这些企业,已经初步完成了对人群、货品、触点的数字化工程,并开始积极建立新的业务模式。这时,企业会寻找更强大的工具,来管理内容的创建、存储、分发和优化全生命周期。我们的DAM系统并不是独立于系统单独存在,而是嵌套在绫云PIM(商品全生命周期管理平台)里面,可以在各个模块之间进行灵活切换调用,例如:设计中心,产品管理,运营中心,知识库等等。发布于 2022-09-16 14:54saas产品赞同 1添加评论分享喜欢收藏申请
Global Dam Watch(全球大坝数据库)介绍及下载 - 知乎
Global Dam Watch(全球大坝数据库)介绍及下载 - 知乎切换模式写文章登录/注册Global Dam Watch(全球大坝数据库)介绍及下载Hydro90水文青年学术交流平台数据介绍作为最古老的人造基础设施形式,水库和大坝在人类历史上一直是经济发展不可或缺的一部分,起到防洪、灌溉、供水和发电等作用。然而,用以描述水库和大坝特征和地理分布的全球数据集在很大程度上并不完整。Global Dam Watch站点提供有关全球和区域范围内大坝和水库数据集的位置和特征的信息。其包括3个核心数据集,共同代表了最详细且免费获取的全球大坝数据库和相关地理参考信息:1. GOODD: The GlObal geOreferenced Database of Dams (全球大坝地理参考数据库),包含了全球范围内谷歌地球卫星图像上可见的所有大坝,目前有38,660个大坝的地理空间坐标。2. GRanD: Global Reservoir and Dam database (全球水库和大坝数据库),包含了7320个高度超过15米或水库面积超过0.1立方千米的大坝的位置和属性数据。3. FHReD: Future Hydropower Reservoirs and Dams (未来的水电站水库和大坝),包含了 3700座正在建造或处于高级规划阶段的大坝的地图。在3个数据集之间会存在一些重叠,如在GRanD中的大型大坝也可能存在于GOODD中。2015年之前在建的水坝可能包含在FHReD中,已经建成的大坝也可能在GRanD或GOODD中显示为已建成但没有属性数据。GDW首页;图片来源:https://www.globaldamwatch.org/home下载使用:https://www.globaldamwatch.org/directory引用格式:GOODD: Mulligan, M., van Soesbergen, A. and Sáenz, L., 2020. GOODD, a global dataset of more than 38,000 georeferenced dams. Scientific Data, 7(1), pp.1-8. GRanD: Lehner, B., C. Reidy Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J.C. Robertson, R. Rodel, N. Sindorf, and D. Wisser. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9 (9): 494-502.FHReD: Zarfl, C., A.E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner. 2015. A global boom in hydropower dam construction. Aquatic Sciences 77 (1): 161–170.GOODD数据库中的大坝和集水区。(a)显示每个国家的大坝数量(黄色至红色)和单个水坝位置(蓝点)和(b)以蓝色显示流入大坝的陆地面积。图片来源:https://www.nature.com/articles/s41597-020-0362-5GRanD中包含大型水库的全球分布;图片来源:https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/100125未来水电站的全球空间分布,在建(蓝点17%)或规划(红点83%);图片来源:https://link.springer.com/article/10.1007/s00027-014-0377-0数据下载1. GDW网站提供了数据下载的链接,点击进入网址:https://www.globaldamwatch.org/directory。2. 下拉至数据列表,A列为数据名称,L列为下载链接。3. 点击一项数据的下载链接后,填写Google表格,需填写邮箱、单位等。4. 提交后跳转至反馈界面(包含下载链接)。编辑于 2023-03-08 14:32・IP 属地广东水文数据数据集水库赞同 54 条评论分享喜欢收藏申请
Dam | Definition, History, Types, Environmental Impacts, Examples, & Uses | Britannica
Dam | Definition, History, Types, Environmental Impacts, Examples, & Uses | Britannica
Search Britannica
Click here to search
Search Britannica
Click here to search
Login
Subscribe
Subscribe
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
On This Day
One Good Fact
Dictionary
New Articles
History & Society
Lifestyles & Social Issues
Philosophy & Religion
Politics, Law & Government
World History
Science & Tech
Health & Medicine
Science
Technology
Biographies
Browse Biographies
Animals & Nature
Birds, Reptiles & Other Vertebrates
Bugs, Mollusks & Other Invertebrates
Environment
Fossils & Geologic Time
Mammals
Plants
Geography & Travel
Geography & Travel
Arts & Culture
Entertainment & Pop Culture
Literature
Sports & Recreation
Visual Arts
Companions
Demystified
Image Galleries
Infographics
Lists
Podcasts
Spotlights
Summaries
The Forum
Top Questions
#WTFact
100 Women
Britannica Kids
Saving Earth
Space Next 50
Student Center
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
dam
Table of Contents
dam
Table of Contents
IntroductionHistoryAncient damsThe Middle EastThe RomansEarly dams of East AsiaForerunners of the modern damThe 15th to the 18th centuryThe 19th centuryDevelopment of modern structural theoryRise of environmental and economic concernsThe modern damBasic problems in dam designSite investigation and testingProblems of materialsWeaknesses of concreteWeaknesses of earthfillThe earthquake problemTypes of damsThe modern concrete damConcrete gravity damsConcrete buttress and multiple-arch damsArch damsEmbankment damsGeneral characteristicsPotential weaknessConstruction techniquesAuxiliary structuresSpillwaysGatesReservoirsFish passes
References & Edit History
Related Topics
Images
For Students
dam summary
Discover
12 Greek Gods and Goddesses
Did Marie-Antoinette Really Say “Let Them Eat Cake”?
Was Napoleon Short?
How Mike the Chicken Survived Without a Head
8 Animals That Suck (Blood)
9 Things You Might Not Know About Adolf Hitler
7 Surprising Uses for Mummies
Home
Technology
Engineering
Civil Engineering
Science & Tech
dam
engineering
Actions
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/technology/dam-engineering
Give Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
National Geographic - Dam
Texas Commission on Environmental Quality - Introduction to Dams
The Ohio State University - Origins - Dams
IndiaNetzone - Dams in India
Academia - Dam
Water Education Foundation - Dams
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
dam - Children's Encyclopedia (Ages 8-11)
dam - Student Encyclopedia (Ages 11 and up)
Please select which sections you would like to print:
Table Of Contents
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/technology/dam-engineering
Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
National Geographic - Dam
Texas Commission on Environmental Quality - Introduction to Dams
The Ohio State University - Origins - Dams
IndiaNetzone - Dams in India
Academia - Dam
Water Education Foundation - Dams
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
dam - Children's Encyclopedia (Ages 8-11)
dam - Student Encyclopedia (Ages 11 and up)
Written by
Donald C. Jackson
Associate Professor of History, Lafayette College, Easton, Pa. Author of Great American Bridges and Dam.
Donald C. Jackson,
J. Guthrie Brown
Senior Consultant, Sir Alexander Gibb & Partners, Consulting Engineers. President, International Commission on Large Dams, 1964–67. Coauthor of Power from Water.
J. Guthrie BrownSee All
Fact-checked by
The Editors of Encyclopaedia Britannica
Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica
Last Updated:
Jan 29, 2024
•
Article History
Table of Contents
Itaipú Dam
See all media
Category:
Science & Tech
Key People:
Sir Benjamin Baker
Sir William Willcocks
Sir Arthur Thomas Cotton
(Show more)
Related Topics:
reservoir
spillway
levee
cofferdam
weir
(Show more)
See all related content →
dam, structure built across a stream, a river, or an estuary to retain water. Dams are built to provide water for human consumption, for irrigating arid and semiarid lands, or for use in industrial processes. They are used to increase the amount of water available for generating hydroelectric power, to reduce peak discharge of floodwater created by large storms or heavy snowmelt, or to increase the depth of water in a river in order to improve navigation and allow barges and ships to travel more easily. Dams can also provide a lake for recreational activities such as swimming, boating, and fishing. Many dams are built for more than one purpose; for example, water in a single reservoir can be used for fishing, to generate hydroelectric power, and to support an irrigation system. Water-control structures of this type are often designated multipurpose dams.Auxiliary works that can help a dam function properly include spillways, movable gates, and valves that control the release of surplus water downstream from the dam. Dams can also include intake structures that deliver water to a power station or to canals, tunnels, or pipelines designed to convey the water stored by the dam to far-distant places. Other auxiliary works are systems for evacuating or flushing out silt that accumulates in the reservoir, locks for permitting the passage of ships through or around the dam site, and fish ladders (graduated steps) and other devices to assist fish seeking to swim past or around a dam.A dam can be a central structure in a multipurpose scheme designed to conserve water resources on a regional basis. Multipurpose dams can hold special importance in developing countries, where a single dam may bring significant benefits related to hydroelectric power production, agricultural development, and industrial growth. However, dams have become a focus of environmental concern because of their impact on migrating fish and riparian ecosystems. In addition, large reservoirs can inundate vast tracts of land that are home to many people, and this has fostered opposition to dam projects by groups who question whether the benefits of proposed projects are worth the costs.In terms of engineering, dams fall into several distinct classes defined by structural type and by building material. The decision as to which type of dam to build largely depends on the foundation conditions in the valley, the construction materials available, the accessibility of the site to transportation networks, and the experiences of the engineers, financiers, and promoters responsible for the project. In modern dam engineering, the choice of materials is usually between concrete, earthfill, and rockfill. Although in the past a number of dams were built of jointed masonry, this practice is now largely obsolete and has been supplanted by concrete. Concrete is used to build massive gravity dams, thin arch dams, and buttress dams. The development of roller-compacted concrete allowed high-quality concrete to be placed with the type of equipment originally developed to move, distribute, and consolidate earthfill. Earthfill and rockfill dams are usually grouped together as embankment dams because they constitute huge mounds of earth and rock that are assembled into imposing man-made embankments.
World's largest dams
By height
name
type1
date of completion
river
country
height (metres)
1Key: A, arch; B, buttress; E, earth fill; G, gravity; M, multi-arch; R, rock fill.
2Vaiont Dam was the scene of a massive landslide and flood in 1963 and no longer operates.
3Diversion tunnels closed and reservoir filling begun December 2002.
4Impounds settling reservoir for fine tailings in oil sands operation near Fort McMurray, Alberta.
5Most of this reservoir is a natural lake.
Source: International Water Power and Dam Construction Yearbook (1996).
Nurek
E
1980
Vakhsh
Tajikistan
300
Grande Dixence
G
1961
Dixence
Switzerland
285
Inguri
A
1980
Inguri
Georgia
272
Vaiont2
A
1961
Vaiont
Italy
262
Chicoasen
ER
1980
Grijalva
Mexico
261
Tehri
ER
20023
Bhagirathi
India
261
Mauvoisin
A
1957
Drance de Bagnes
Switzerland
250
Guavio
ER
1989
Guavio
Colombia
246
Sayano-Shushenskoye
AG
1989
Yenisey
Russia
245
Mica
ER
1973
Columbia
Canada
242
Ertan
A
1999
Yalong (Ya-lung)
China
240
Chivor
ER
1957
Batá
Colombia
237
By volume
name
type1
date of completion
river
country
volume (000 cubic metres)
Syncrude Tailings
E
N/A
4
Canada
750,000
New Cornelia Tailings
E
1973
Ten Mile Wash
U.S.
209,500
Tarbela
ER
1977
Indus
Pakistan
106,000
Fort Peck
E
1937
Missouri
U.S.
96,050
Lower Usuma
E
1990
Usuma
Nigeria
93,000
Tucurui
EGR
1984
Tocantins
Brazil
85,200
Ataturk
ER
1990
Euphrates
Turkey
84,500
Guri (Raúl Leoni)
EGR
1986
Caroní
Venezuela
77,971
Oahe
E
1958
Missouri
U.S.
66,517
Gardiner
E
1968
Saskatchewan
Canada
65,400
Mangla
E
1967
Jhelum
Pakistan
65,379
Afsluitdijk
E
1932
IJsselmeer
Netherlands
63,430
By size of reservoir
name
type1
date of completion
river
country
reservoir capacity (000 cubic metres)
Owen Falls
G
1954
Victoria Nile
Uganda
2,700,000,0005
Kakhovka
EG
1955
Dnieper
Ukraine
182,000,000
Kariba
A
1959
Zambezi
Zimbabwe-Zambia
180,600,000
Bratsk
EG
1964
Angara
Russia
169,270,000
Aswan High
ER
1970
Nile
Egypt
168,900,000
Akosombo
ER
1965
Volta
Ghana
153,000,000
Daniel Johnson
M
1968
Manicouagan
Canada
141,852,000
Guri (Raúl Leoni)
EGR
1986
Caroní
Venezuela
138,000,000
Krasnoyarsk
G
1967
Yenisey
Russia
73,300,000
W.A.C. Bennett
E
1967
Peace
Canada
70,309,000
Zeya
B
1978
Zeya
Russia
68,400,000
Cahora Bassa
A
1974
Zambezi
Mozambique
63,000,000
By power capacity
name
type1
date of completion
river
country
installed capacity(megawatts)
Itaipú
EGR
1982
Paraná
Brazil-Paraguay
12,600
Guri (Raúl Leoni)
EGR
1986
Caroní
Venezuela
10,300
Grand Coulee
G
1941
Columbia
U.S.
6,480
Sayano-Shushenskoye
AG
1989
Yenisey
Russia
6,400
Krasnoyarsk
G
1967
Yenisey
Russia
6,000
Churchill Falls
E
1971
Churchill
Canada
5,428
La Grande 2
R
1978
La Grande
Canada
5,328
Bratsk
EG
1964
Angara
Russia
4,500
Ust-Ilim
R
1977
Angara
Russia
4,320
Tucurui
EGR
1984
Tocantins
Brazil
4,200
Ilha Solteira
1973
Paraná
Brazil
3,200
Tarbela
ER
1977
Indus
Pakistan
3,478
History Ancient dams The Middle East The oldest known dam in the world is a masonry and earthen embankment at Jawa in the Black Desert of modern Jordan. The Jawa Dam was built in the 4th millennium bce to hold back the waters of a small stream and allow increased irrigation production on arable land downstream. Evidence exists of another masonry-faced earthen dam built about 2700 bce at Sadd el-Kafara, about 30 km (19 miles) south of Cairo, Egypt. The Sadd el-Kafara failed shortly after completion when, in the absence of a spillway that could resist erosion, it was overtopped by a flood and washed away. The oldest dam still in use is a rockfill embankment about 6 metres (20 feet) high on the Orontes River in Syria, built about 1300 bce for local irrigation use. The Assyrians, Babylonians, and Persians built dams between 700 and 250 bce for water supply and irrigation. Contemporary with these was the earthen Maʾrib Dam in the southern Arabian Peninsula, which was more than 15 metres (50 feet) high and nearly 600 metres (1,970 feet) long. Flanked by spillways, this dam delivered water to a system of irrigation canals for more than 1,000 years. Remains of the Maʾrib Dam are still evident in present-day Maʾrib, Yemen. Other dams were built in this period in Sri Lanka, India, and China.
Get a Britannica Premium subscription and gain access to exclusive content.
Subscribe Now
The Romans Despite their skill as civil engineers, the Romans’ role in the evolution of dams is not particularly remarkable in terms of number of structures built or advances in height. Their skill lay in the comprehensive collection and storage of water and in its transport and distribution by aqueducts. At least two Roman dams in southwestern Spain, Proserpina and Cornalbo, are still in use, while the reservoirs of others have filled with silt. The Proserpina Dam, 12 metres (40 feet) high, features a masonry-faced core wall of concrete backed by earth that is strengthened by buttresses supporting the downstream face. The Cornalbo Dam features masonry walls that form cells; these cells are filled with stones or clay and faced with mortar. The merit of curving a dam upstream was appreciated by at least some Roman engineers, and the forerunner of the modern curved gravity dam was built by Byzantine engineers in 550 ce at a site near the present Turkish-Syrian border. Early dams of East Asia In East Asia, dam construction evolved quite independently from practices in the Mediterranean world. In 240 bce a stone crib was built across the Jing River in the Gukou valley in China; this structure was about 30 metres (100 feet) high and about 300 metres (1,000 feet) long. Many earthen dams of moderate height (in some cases of great length) were built by the Sinhalese in Sri Lanka after the 5th century bce to form reservoirs or tanks for extensive irrigation works. The Kalabalala Tank, which was formed by an earthen dam 24 metres (79 feet) high and nearly 6 km (3.75 miles) in length, had a perimeter of 60 km (37 miles) and helped store monsoon rainfall for irrigating the country around the ancient capital of Anuradhapura. Many of these tanks in Sri Lanka are still in use today. In Japan the Diamonike Dam reached a height of 32 metres (105 feet) in 1128 ce. Numerous dams were also constructed in India and Pakistan. In India a design employing hewn stone to face the steeply sloping sides of earthen dams evolved, reaching a climax in the 16-km- (10-mile-) long Veeranam Dam in Tamil Nadu, built from 1011 to 1037 ce. In Persia (modern-day Iran) the Kebar Dam and the Kurit Dam represented the world’s first large-scale thin-arch dams. The Kebar and Kurit dams were built early in the 14th century by Il-Khanid Mongols; the Kebar Dam reached a height of 26 metres (85 feet), and the Kurit Dam, after successive heightenings over the centuries, extended 64 metres (210 feet) above its foundation. Remarkably, the Kurit Dam stood as the world’s tallest dam until the beginning of the 20th century. By the end of the 20th century, its reservoir had almost completely silted in, causing floodwaters to regularly overtop the dam and cause serious erosion. A new, larger dam was built just above the old one in order to create a new reservoir and redirect floodwaters away from the ancient structure. Forerunners of the modern dam The 15th to the 18th century In the 15th and 16th centuries, dam construction resumed in Italy and, on a larger scale, in Spain, where Roman and Moorish influence was still felt. In particular, the Tibi Dam across the Monnegre River in Spain, a curved gravity structure 42 metres (138 feet) high, was not surpassed in height in western Europe until the building of the Gouffre d’Enfer Dam in France almost three centuries later. Also in Spain, the 23-metre- (75-foot-) high Elche Dam, which was built in the early 17th century for irrigation use, was an innovative thin-arch masonry structure. In the British Isles and northern Europe, where rainfall is ample and well distributed throughout the year, dam construction before the Industrial Revolution proceeded on only a modest scale in terms of height. Dams were generally limited to forming water reservoirs for towns, powering water mills, and supplying water for navigation canals. Probably the most remarkable of these structures was the 35-metre- (115-foot-) high earthen dam built in 1675 at Saint-Ferréol, near Toulouse, France. This dam provided water for the Midi Canal, and for more than 150 years it was the highest earthen dam in the world. The 19th century Up to the middle of the 19th century, dam design and construction were largely based upon experience and empirical knowledge. An understanding of material and structural theory had been accumulating for 250 years, with scientific luminaries such as Galileo, Isaac Newton, Gottfried Wilhelm Leibniz, Robert Hooke, Daniel Bernoulli, Leonhard Euler, Charles-Augustin de Coulomb, and Claude-Louis Navier among those who made significant contributions to these advancements. In the 1850s, William John Macquorn Rankine, professor of civil engineering at the University of Glasgow in Scotland, successfully demonstrated how applied science could help the practical engineer. Rankine’s work on the stability of loose earth, for example, provided a better understanding of the principles of dam design and performance of structures. In mid-century France, J. Augustin Tortene de Sazilly led the way in developing the mathematical analysis of vertically faced masonry gravity dams, and François Zola first utilized mathematical analysis in designing a thin-arch masonry dam. Development of modern structural theory Masonry and concrete dam design is based on conventional structural theory. In this relationship, two phases may be recognized. The first, extending from 1853 until about 1910 and represented by the contributions of a number of French and British engineers, was actively concerned with the precise profile of gravity dams in which the horizontal thrust of water in a reservoir is resisted by the weight of the dam itself and the inclined reaction of the dam’s foundation. Starting about 1910, however, engineers began to recognize that concrete dams are monolithic three-dimensional structures in which the distribution of stress and the deflections of individual points depend on stresses and deflections of many other points in the structure. Movements at one point have to be compatible with movements at all others. Because of the complexity of the stress pattern, model techniques were gradually employed. Models were built in plasticine, rubber, plaster, and finely graded concrete. Utilizing virtual models, computers facilitate engineers’ use of finite element analysis, by which a monolithic structure is mathematically conceived as an assembly of separate, discrete blocks. Study of both physical models and computer simulations permits deflections of a dam’s foundations and structure to be analyzed. However, while computers are useful in analyzing designs, they cannot generate (or create) the dam designs proposed for specific sites. This latter process, which is often referred to as form making, remains the responsibility of human engineers. Hoover DamAerial view of Hoover Dam on the Arizona-Nevada border.(more)Hoover DamThe drawing shows how the completed Hoover Dam works. The Nevada wall of the Black Canyon (to the left) is shown solid, but the Arizona wall (to the right) shows with broken lines what the internal structures behind the wall look like. The fluted cylinders behind the dam are intake towers, and pipes leading from them are penstocks. These convey water to the turbines in the powerhouse at the foot of the dam. While the dam was being built, the four large tunnels, two on each side of the river, diverted the river around the dam site. The upstream ends of these tunnels have been plugged. They serve as penstocks and spillway outlets.(more)During the 100 years up to the end of World War II, experience in design and construction of dams advanced in many directions. In the first decade of the 20th century, many large dams were built in the United States and western Europe. In succeeding decades, particularly during the war years, many impressive structures were built in the United States by federal government agencies and private power companies. Hoover Dam, built on the Colorado River at the Arizona-Nevada border between 1931 and 1936, is an outstanding example of a curved gravity dam built in a narrow gorge across a major river and employing advanced design principles. It has a height of 221 metres (726 feet) from its foundations, a crest length of 379 metres (1,244 feet), and a reservoir capacity of 37 billion cubic metres (48 billion cubic yards). Fort Peck DamFort Peck Dam on the Missouri River creates Fort Peck Lake, near Glasgow, northeastern Montana. Construction began in 1933 and was finished in 1940.(more)Among earthen dams, Fort Peck Dam, completed in 1940 on the Missouri River in Montana, contained the greatest volume of fill, 96 million cubic metres (126 million cubic yards). This volume was not exceeded until the completion in 1975 of Tarbela Dam in Pakistan, with 145 million cubic metres (190 million cubic yards) of fill. Three Gorges DamThree Gorges Dam on the Yangtze River, just west of the city of Yichang, Hubei province, China. (more)Construction of the massive Three Gorges Dam in China began in 1994, with most construction completed in 2006. However, interest in the project extended back several decades, and American engineer J.L. Savage, who had played an important role in the building of Hoover Dam, worked on preliminary designs for a large dam on the Yangtze River (Chang Jiang) in the mid-1940s before the Communist Party took control of mainland China in 1949. Planning for the existing structure commenced in earnest in the 1980s, and construction began after approval by the National People’s Congress in 1992. Built as a straight-crested concrete gravity structure, Three Gorges Dam was constructed using a trestle-and-crane method of transporting and casting concrete similar to that used in the 1930s for the Grand Coulee Dam on the Columbia River in the northwestern United States. Three Gorges Dam is 2,335 metres (7,660 feet) long with a maximum height of 185 metres (607 feet); it incorporates 28 million cubic metres (37 million cubic yards) of concrete and 463,000 metric tons of steel into its design. When it became fully operational in 2012, the dam’s hydroelectric power plant had the largest generating capacity in the world, 22,500 megawatts. The reservoir impounded by the dam extended back up the Yangtze River for more than 600 km (almost 400 miles). Rise of environmental and economic concerns The effect of dams on the natural environment became an issue of public concern at the end of the 20th century. Much of this concern was energized by fears that dams were destroying the populations of migrating (or spawning) fish, which were being blocked or impeded by the construction of dams across rivers and waterways. (See below Fish passes.) In more general terms, dams were often perceived—or portrayed—as not simply transforming the environment to serve human desires but also obliterating the environment and causing the destruction of flora and fauna and picturesque landscapes on a massive scale. Dams were also blamed for inundating the cultural homelands of native peoples, who were forced to relocate out of reservoir “take” areas created by large-scale dams. None of these concerns sprang up without warning, and they all have roots that date back many decades. The environmental problems associated with dams have been exacerbated as dams have increased in height. However, even relatively small dams have prompted opposition by people who believe that their interests are adversely affected by a particular structure. For example, in colonial America, legal action was often taken by upstream landowners who believed that the pond impounded by a small mill dam erected downstream was flooding—and thus rendering unusable—land that could otherwise be used for growing crops or as pasture for livestock. By the late 18th century, when many mill dams were beginning to reach heights that could not easily be jumped or traversed by spawning fish, some people sought to have them removed because of their effect on fishing. In such situations, opposition to dams is not driven by an abstract concern for the environment or the survival of riparian ecosystems; rather, it is driven by an appreciation that a particular dam is transforming the environment in ways that serve only certain special interests. In the 1870s one of the first wide-scale efforts to block the construction of a dam because of misgivings about its potential effect upon the landscape came in the Lake District of northwestern England. The Lake District is recognized as one of the most picturesque regions of England because of its mountains and rolling hills. However, this same landscape also offered a good location for an artificial reservoir that could feed high-quality water to the growing industrial city of Manchester almost 160 km (100 miles) to the south. The city’s Thirlmere Dam was eventually built and generally accepted as a positive development, but not before it aroused impassioned opposition among citizens throughout the country who feared that part of England’s natural and cultural heritage might be defiled by the creation of a “water tank” in the midst of the Lake District. In the United States a similar but even more impassioned battle erupted in the early 20th century over plans by the city of San Francisco to build a reservoir in Hetch Hetchy Valley. Located more than 900 metres (3,000 feet) above sea level, the Hetch Hetchy site offered a good storage location in the Sierra Nevada for water that could be delivered without pumping to San Francisco via an aqueduct nearly 270 km (167 miles) long. Hetch Hetchy, however, is also located within the northern boundaries of Yosemite National Park. The renowned naturalist John Muir led the way in fighting the proposed dam and—with assistance from Sierra Club members and other citizens across the United States who were concerned about the loss of natural landscapes to commercial and municipal development—made the fight over the preservation of Hetch Hetchy Valley a national issue. In the end, the benefits to be provided by the dam—including the development of at least 200,000 kilowatts of hydroelectric power—outweighed the costs to be exacted by the inundation of the valley. Approved by the U.S. Congress in 1913, the construction of the dam, known today as O’Shaughnessy Dam in honour of the city engineer who oversaw its construction, was a defeat for the Sierra Club and landscape preservationists, who continued to use it as a symbol and rallying cry for mid-20th-century environmental causes. Glen Canyon DamConstruction of the Glen Canyon Dam on the Colorado River formed Lake Powell in Arizona.(more)After World War II, plans were made by the U.S. Bureau of Reclamation to build a hydroelectric power dam across the Green River at Echo Park Canyon within the boundaries of Dinosaur National Monument in eastern Utah. Many of the same issues raised at Hetch Hetchy were again debated, but in this instance opponents such as the Sierra Club were able to block construction of the dam through a concerted effort to lobby Congress and win support from the American public at large. However, in its effort to save Echo Park, the Sierra Club dropped opposition to the proposed Glen Canyon Dam across the Colorado River near the Arizona-Utah border, and this 216-metre (710-foot) high concrete arch dam, built between 1956 and 1966, eventually came to be seen by environmentalists as being responsible for destroying a beautiful pristine landscape encompassing thousands of square kilometres. Anger over the Glen Canyon Dam energized the Sierra Club to mount a major campaign against additional dams proposed for construction along the Colorado River near the borders of Grand Canyon National Park. By the late 1960s, plans for these proposed Grand Canyon dams were politically dead. Although the reasons for their demise were largely the result of regional water conflicts between states in the Pacific Northwest and states in the American Southwest, the environmental movement took credit for saving America from the desecration of a national treasure. Xiling GorgeXiling Gorge, in the Three Gorges section of the Yangtze River (Chang Jiang), as it appeared before completion of the Three Gorges Dam, Hubei province, China.(more)In developing parts of the world, dams are still perceived as an important source of hydroelectric power and irrigation water. Environmental costs associated with dams have nonetheless attracted attention. In India the relocation of hundreds of thousands of people out of reservoir areas generated intense political opposition to some dam projects. In China the Three Gorges Dam (constructed from 1994 to 2006) generated significant opposition within China and in the international community. Millions of people were displaced by, and cultural and natural treasures were lost beneath, the reservoir that was created following erection of the 185-metre- (607-foot-) high concrete wall, some 2,300 metres (7,500 feet) long, across the Yangtze River. The dam is capable of producing 22,500 megawatts of electricity (which can reduce coal usage by millions of tons per year), making it one of the largest hydroelectric producers in the world.
Dams still unquestionably have an important role to play within the world’s social, political, and economic framework. But for the foreseeable future, the specific character of that role and the way that dams will interrelate with the environment will likely remain a subject of contentious debate.
Dams
EducationSign InMenuDonateENCYCLOPEDIC ENTRYENCYCLOPEDIC ENTRYDamsDamsA dam is a structure built across a stream or river to hold water back. Dams can be used to store water, control flooding, and generate electricity.Grades5 - 8SubjectsConservation, Earth Science, Geology, MeteorologyImageAerial view of the Hoover DamAn aerial view of the Hoover Dam. This dam has been harvesting hydroelectric power for over 80 years now.Photograph by Andrew ZarivnyPowered byArticleVocabularyA dam is a structure built across a river or stream to hold back water. People have used different materials to build dams over the centuries. Ancient dam builders used natural materials such as rocks or clay. Modern-day dam builders often use concrete.Manmade dams create artificial lakes called reservoirs. Reservoirs can be used to store water for farming, industry, and household use. They also can be used for fishing, boating, and other leisure activities. People have used dams for many centuries to help prevent flooding.The ancient Mesopotamians may have been some of the first humans to build dams. The oldest known dam is the Jawa Dam, located in present-day Jordan. It was built in the fourth century B.C.E. Dams provided farmers with a steady source of water to irrigate crops. This allowed ancient Mesopotamians to feed a growing population.The Romans were master-dam builders too. They used dams to divert water for drinking, bathing, and irrigation. One of the oldest dams still in use is the Cornalvo Dam in Spain. The ancient Romans built it in the first or second century C.E.The force of flowing water creates mechanical power. People have harnessed this power for centuries with the use of dams. Small dams powered paddle wheels in pre-industrial Europe and America. These were used to help saw logs or grind corn and other grains.During the Industrial Revolution, engineers began to build bigger dams. These industrial-sized dams could hold back more water to power the big machinery of factories and mines. They also could turn giant turbines to generate electricity.The early 1900s ushered in an era of “big dam” building in America as demands for electricity increased. During the Great Depression, President Franklin D. Roosevelt put Americans back to work building massive dam projects. The most famous of these is the Hoover Dam.The Hoover Dam sits on the border between Nevada and Arizona. It was completed in 1936. The Hoover Dam is regarded as an engineering marvel. It was the tallest dam ever built at the time—222 meters (727 feet). The dam helped to control the flow of water on the Colorado River by creating Lake Mead, one of the largest reservoirs in the United States. Lake Mead provides drinking water for the city of Las Vegas.Dams have long been viewed as a symbol of human ingenuity. However, ecologists who study rivers and lakes have uncovered some environmental downsides to dam construction. Dams change the way rivers function, and in some cases, this can harm local fish populations.Flooding landscapes to create reservoirs can have consequences for biodiversity as well. Brazilian biologist Raffaello Di Ponzio studies the impact of big dam projects on the plants and animals of the Amazon Rainforest. More than 200 hydroelectric dams have been proposed in Brazil. While these dams could help satisfy growing South American energy demands, they would also flood more than 10 million hectares (25 million acres) of the Amazon Rainforest.CreditsMedia CreditsThe audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.DirectorTyson Brown, National Geographic SocietyAuthorNational Geographic SocietyProduction ManagersGina Borgia, National Geographic SocietyJeanna Sullivan, National Geographic SocietyProgram SpecialistsSarah Appleton, National Geographic Society, National Geographic SocietyMargot Willis, National Geographic SocietyProducerAndré Gabrielli, National Geographic SocietyotherLast UpdatedOctober 19, 2023User PermissionsFor information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.MediaIf a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.TextText on this page is printable and can be used according to our Terms of Service.InteractivesAny interactives on this page can only be played while you are visiting our website. You cannot download interactives.Related ResourcesNational Geographic Headquarters 1145 17th Street NW Washington, DC 20036ABOUTNational Geographic SocietyNatGeo.comNews and ImpactContact UsExploreOur ExplorersOur ProgramsEducationNat Geo LiveStorytellers CollectiveTraveling ExhibitionsJoin UsWays to GiveApply for a GrantCareersdonateget updatesConnectNational Geographic Society is a 501 (c)(3) organization. © 1996 - 2024 National Geographic Society. All rights reserved.Privacy Notice|Sustainability Policy|Terms of Service|Code of Eth特赞内容数据资产管理(DAM),多场景赋能内容工程 - 知乎
特赞内容数据资产管理(DAM),多场景赋能内容工程 - 知乎切换模式写文章登录/注册特赞内容数据资产管理(DAM),多场景赋能内容工程全球TMT提供全球互联网科技、媒体、通信行业大公司动态(全球TMT2021年3月20日讯)2021年3月18日,内容科技企业 特赞Tezign 在上海举办国内首届 DAM Con 大会(内容体验数智化大会),介绍内容体验数据资产管理系统(Digital Asset Management,DAM),并发布在多种场景下的解决方案。特赞也是中国大陆首家系统性发布内容体验数据资产管理系统(Digital Asset Management,DAM)的科技企业。 DAM :一种新的营销增长方法, 赋能全面营销场景 “DAM 已经成为一种营销增长新方法。”特赞总裁、合伙人杨振说。他提到,数字能力已经在重塑营销各环节,现在的营销人需要构建“3×3 营销工程”,在公域、私域和交易场景,构建: 第一,触点工程,建立用户间的连接点,通过良好布局,从内容层面更加高效、积极地抓住用户。第二,用户工程。清晰用户画像,通过策略圈选并跟进,把内容工程搭建起来,是DAM能够发挥最大威力的地方,不限于公域广告,还有私域运营甚至线下也能发挥作用。第三,内容工程。最难的内容工程涉及不同用户人群、不同媒体触点、不同规格尺寸……现在的趋势是有越来越多的测试需求,一场营销战役甚至要延展出成千上万的创意物料,这样的工作量必须要有工具来做。 特赞的 DAM 就像营销人的“内容武器库”,企业高管的数据控制台,从品牌管理、社媒营销、电商营销、私域运营、效果投放、产品创新、渠道适配、智能合规等这些场景赋能品牌做内容体验的数字化。 数智化内容体验,从品牌的“内容工程”开始 “内容工程是一个系统,能够沉淀内容驱动增长的模型,从而可以规模化的复制内容生产成功秘诀。”特赞联合创始人及CTO王喆提到,“如今每个品牌面对消费者,需要更大规模的内容,每一个品牌都应该有自己的一个基因图谱,也就是自己的内容标签树,能够面对消费者不断的进化和演绎。每一个品牌都需要一套内容架构,一个内容供应链,一组内容标签,和一系列元数据(Metadata)。” 1. 内容架构:从品牌金字塔到内容香槟塔,让内容统一而多样 品牌如何搭建内容架构?特赞内容架构师、资深创意人 Freddie Yuan 给出答案。他提到:“过去,品牌建设的是固化的金字塔。内容为王的时代,品牌需要搭建内容可‘流动’的香槟塔 -- 品牌的内容就像酒本身,有自己独特的味道;而当内容流动到更多触点,更多场景时,就需要千人千面的内容矩阵。而且所有层级的内容,都应该被记录下来,被DAM管理起来,持续优化。” 2.内容供应链(SKU):平台规模化生产能力,为海量创意内容生产保驾护航 特赞资深客户总监吴天红,分享了内容供应的SKU级玩法。“我们将内容的全链路拆解到单个的 SKU,将每一场营销战役拆解成一个方案、一支视频、一组海报甚至一个表情包等此类一个个SKU。这些 SKU 任意组合再创造,生成新的营销战役。在特赞,整个创意平台已经上线超过20个品类、过100个SKU,大家也可以清楚地看到每个SKU的生产环节、周期和费用,大大降低营销工作流当中80%的重复沟通。特赞每天成百上千的创意内容,从线上到线下,从简单到复杂,用这种高效的内容供应机制已经交付2w+项目,生产 10w+创意内容。” 3.内容标签体系(Metadata):打造品牌私有内容标签体系,解码内容工程 特赞内容创新研发资深业务总监金阳,分享了如何打造品牌的编码体系。“生物科学家告诉我们,鱼因为视力增强而进化,因为看见所以进化,现在品牌的内容营销,也是同样的逻辑 -- 要进化,就要先看见,那么内容的标签就会越来越重要。当我们有了标签,可以看见元素,就可以看见元素级的效果,从而有更深入的洞察。当我们从标签级理解内容时,CMO 值得再做一次 -- 从CMO到OMC -- Optimization 内容优化的洞察,Management 内容智能管理,Creation 内容生产。” 4.数智化品牌视频工程:CMO们也许需要“视频C.M.O.” 特赞副总裁、特赞视频解决方案负责人猫叔说:“当阿里、腾讯、字节、快手们已经开始使用千人千面留住用户时,品牌要如何具备十万级/每年的视频内容生产和管理能力?数智化的品牌视频工程,意味着我们重新定义视频内容的生产和内容流转,如果千人千面的视频是终局,现在让我们至少从十人二十面开始吧!特赞希望为品牌带来工程的方法、好用的工具、以及新的工作流。也许CMO们是时候考虑一下‘视频C.M.O.’了。” 特赞也于近期宣布获得C2轮融资,由淡马锡(Temasek)领投,独秀资本(Unicorn Capital Partners)、郑志刚 C 资本 (C Ventures)、软银中国资本和所有老投资人(红杉中国、赫斯特资本、线性资本、靖亚资本、心元资本等)跟投。去年8月,特赞宣布C1轮融资,由红杉中国领投,全部老投资人跟投。C轮累计融资1亿美元。本轮融资后,特赞将在产品、研发、数据和底层技术上做更大的投入,也将拓展业务团队,设立华南办公室。以内容体验数据资产管理作为平台,拓展不同行业的中大型企业的平台化和智能化内容生产、内容流转的场景。 发布于 2021-03-20 11:05商业大数据资产管理赞同 3添加评论分享喜欢收藏申请
Three Gorges Dam | Facts, Construction, Benefits, & Problems | Britannica
Three Gorges Dam | Facts, Construction, Benefits, & Problems | Britannica
Search Britannica
Click here to search
Search Britannica
Click here to search
Login
Subscribe
Subscribe
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
On This Day
One Good Fact
Dictionary
New Articles
History & Society
Lifestyles & Social Issues
Philosophy & Religion
Politics, Law & Government
World History
Science & Tech
Health & Medicine
Science
Technology
Biographies
Browse Biographies
Animals & Nature
Birds, Reptiles & Other Vertebrates
Bugs, Mollusks & Other Invertebrates
Environment
Fossils & Geologic Time
Mammals
Plants
Geography & Travel
Geography & Travel
Arts & Culture
Entertainment & Pop Culture
Literature
Sports & Recreation
Visual Arts
Companions
Demystified
Image Galleries
Infographics
Lists
Podcasts
Spotlights
Summaries
The Forum
Top Questions
#WTFact
100 Women
Britannica Kids
Saving Earth
Space Next 50
Student Center
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
Three Gorges Dam
Table of Contents
Three Gorges Dam
Table of Contents
IntroductionPhysical description and capacity of the Three Gorges DamHistory and controversy of the Three Gorges Dam
References & Edit History
Quick Facts & Related Topics
Images
For Students
Three Gorges Dam summary
Quizzes
47 Questions from Britannica’s Most Popular Geography Quizzes
Related Questions
What are the major ethnic groups in China?
Read Next
Timeline of the 1990s
A Brief Overview of China’s Cultural Revolution
The Effects of China’s One-Child Policy
Discover
9 of the World’s Deadliest Spiders
How Did Helen Keller Fly a Plane?
Did Marie-Antoinette Really Say “Let Them Eat Cake”?
8 Animals That Suck (Blood)
How Many Electoral College Votes Does Each U.S. State Have?
How Mike the Chicken Survived Without a Head
9 Things You Might Not Know About Adolf Hitler
Home
Technology
Engineering
Civil Engineering
Science & Tech
Three Gorges Dam
dam, China
Actions
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/topic/Three-Gorges-Dam
Give Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
CNN - China's Three Gorges Dam is one of the largest ever created. Was it worth it?
Montana State University - Three Gorges Dam
Association for Asian Studies - The Three Gorges: Dam Energy, the Environment, and the New Emperors
International Rivers - Three Gorges Dam
NASA - Scientific Visualization Studio - Rise of the Three Gorges Dam
Frontiers - Case Study: Influence of Three Gorges Reservoir Impoundment on Hydrological Regime of the Acipenser sinensis Spawning Ground, Yangtze River, China
Please select which sections you would like to print:
Table Of Contents
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/topic/Three-Gorges-Dam
Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
CNN - China's Three Gorges Dam is one of the largest ever created. Was it worth it?
Montana State University - Three Gorges Dam
Association for Asian Studies - The Three Gorges: Dam Energy, the Environment, and the New Emperors
International Rivers - Three Gorges Dam
NASA - Scientific Visualization Studio - Rise of the Three Gorges Dam
Frontiers - Case Study: Influence of Three Gorges Reservoir Impoundment on Hydrological Regime of the Acipenser sinensis Spawning Ground, Yangtze River, China
Also known as: The Sanxia
Written and fact-checked by
The Editors of Encyclopaedia Britannica
Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica
Article History
Table of Contents
Three Gorges DamThe Three Gorges Dam spanning the Yangtze River (Chang Jiang) near Yichang, Hubei province, China.(more)Three Gorges Dam, dam on the Yangtze River (Chang Jiang) just west of the city of Yichang in Hubei province, China. When construction of the dam officially began in 1994, it was the largest engineering project in China. At the time of its completion in 2006, it was the largest dam structure in the world. The dam and accompanying hydroelectric plant were built in phases and over the course of many years. It reached its full generating capacity in 2012. The dam allows the navigation of oceangoing freighters and generates hydroelectric power. It was also intended to provide protection from floods, but efficacy on this point is unclear and has been debated.While the construction of the Three Gorges Dam was an engineering feat, it has also been fraught with controversy: construction of the dam caused the displacement of at least 1.3 million people and the destruction of natural features and countless rare architectural and archaeological sites. The dam’s reservoir is blamed for an increase in the number of landslides and earthquakes in the region. Physical description and capacity of the Three Gorges Dam Three Gorges DamThree Gorges Dam on the Yangtze River, just west of the city of Yichang, Hubei province, China. (more)A straight-crested concrete gravity structure, the Three Gorges Dam is 2,335 metres (7,660 feet) long with a maximum height of 185 metres (607 feet). It incorporates 28 million cubic metres (37 million cubic yards) of concrete and 463,000 metric tons of steel into its design. Submerging large areas of the Qutang, Wu, and Xiling gorges for some 600 km (375 miles) upstream, the dam has created an immense deepwater reservoir allowing oceangoing freighters to navigate 2,250 km (1,400 miles) inland from Shanghai on the East China Sea to the inland city of Chongqing. Navigation of the dam and reservoir is facilitated by the five-tier ship locks at both ends of the complex, which allow vessels of up to 10,000 tons to navigate past the dam, and a ship lift, which allows vessels of up to 3,000 tons to bypass the ship locks and travel past the dam more quickly. At the time of its completion in late 2015, the lift, which was 120 metres (394 feet) long, 18 metres (59 feet) wide, and 3.5 metres (11 feet) deep, was the largest ship lift in the world. Limited hydroelectric power production began in 2003 and gradually increased as additional turbine generators came online over the years until 2012, when all of the dam’s 32 turbine generator units were operating. Those units, along with 2 additional generators, gave the dam the capacity to generate 22,500 megawatts of electricity, making it the most productive hydroelectric dam in the world. In 2020 the hydroelectric plant produced 111.88 terawatt hours, setting a new world record for annual power generation volume.
Britannica Quiz
47 Questions from Britannica’s Most Popular Geography Quizzes
The dam also was intended to protect millions of people from the periodic flooding that plagues the Yangtze basin, although just how effective it has been in this regard has been debated. In 2020 China experienced its heaviest floods in more than three decades, and the dam’s reservoir neared maximum capacity, reaching the highest levels since it began retaining water in 2003. Officials said that the dam reduced damage and loss of life from the floods, while critics asserted that the heavy floods served to highlight the limitations of the dam as an effective flood-control tool.